

Philip Mote

Climate Impacts Group University of Washington

With contributions from Alan Hamlet, Nate van Rheenan, Richard Slaughter, Don Reading, Lara Whitely Binder, Rick Palmer

philip@atmos.washington.edu (206) 616-5346

The Climate Impacts Group

http://www.cses.washington.edu/cig/

- Goal: help the region become more resilient to climate variations and climate change
- Primary research areas:
 - climate dynamics, water, salmon, forests, coasts
 - application of the research in managing these sectors
- Supported by NOAA Office of Global Programs

Three main points

- Humans are changing global climate, and these changes will become more evident
- Warming will reduce snowpack and exacerbate summer water shortages; some of these changes are already becoming apparent in Idaho
- Future warming introduces a climatedriven depletion of the SRP aquifer

The context: recent drought

Dry spring 2004

Warm too

Several years of moisture deficit

...and above-average temperatures

Idaho's climate is partly driven by the Pacific Decadal Oscillation (PDO)

If this graph does not appear, see http://jisao.washington.edu/pdo/

0

PDO surface air temperature anomalies (C) 1950-96

0

PDO precipitation anomalies (cm/month) 1950-96

The context

Recent warm dry climate is not just PDO

Three main points

- Humans are changing global climate, and these changes will become more evident
- Warming will reduce snowpack and exacerbate summer water shortages; some of these changes are already becoming apparent in Idaho
- Future warming introduces a climatedriven depletion of the SRP aquifer

Science of climate change

- Thousands of peer-reviewed scientific papers
- Intergovernmental Panel on Climate Change (IPCC)
- Major reports in 1990, 1996, 2001
- Conclusions:
 - "An increasing body of observations gives a collective picture of a warming world and other changes in the climate system."
 - "There is new and stronger evidence that most of the warming observed over the last 50 years is attributable to human activities."

CO₂ over the last 160,000 yr

- Appears to be higher than any time in past ~23 million yrs
- ~70% of CO₂ emissions come from fossil fuel burning

From a long term perspective, these changes are enormous

Methane (CH4)

- Has increased ~150% since1750
- Current concentration has not been exceeded in at least 420,000 years
- Slightly more than 50% of CH₄ emissions originate from human activities
- More potent greenhouse gas than CO₂, per molecule, but less abundant

Could these measurements be wrong?

Urbanization?

 Perhaps 10% of warming; lots of natural evidence

- Stations too sparse?
- Warming patterns very big
- Satellite measurements show no warming?
- Surface definitely warming;
 troposphere warming 1960-2001 but not 1979-2001

Temperature trends (°C per century), since 1920

The South Cascade glacier retreated dramatically in the 20th century

Courtesy of the USGS glacier group

1928

those satellite observations

Models: troposphere (0-5 miles) should warm *faster* than surface

But satellites show little warming since 1979: does this mean that surface measurements are unreliable?

The complete picture: troposphere has warmed

National Academy: satellite measurements "in no way invalidates the conclusion that surface temperature has been rising

Emerging understanding: ozone depletion a factor?

Some evidence that it's not natural

- Rate of change appears to be unusual
- Pattern of change matches that expected from increasing greenhouse gases
- Solar, volcanic forcing would have led to cooling in the past ~30 years

Long-term context

source: Mann et al., EOS

Solar output varies - but not much

Figure courtesy of NOAA National Geophysical Data Center

Three main points

- Humans are changing global climate, and these changes will become more evident
- Warming will reduce snowpack and exacerbate summer water shortages; some of these changes are already becoming apparent in Idaho
- Future warming introduces a climatedriven depletion of the SRP aquifer

THE DAY AFTER TOMORROW IN THEATRES WORLDWIDE 28 MAY 2004 HITTER HITTER 7 - FT WHERE WILL YOU BE?

(b) CO₂ concentrations

21st century temperature change

Temperature change, 2071-2100 minus 1961-1990

Projected PNW Climate Change

Projected changes in average annual PNW temperature and precipitation for the decades of the 2020s and 2040s.

high confidence lower confidence

2020s	Temperature	Precipitation
Low	+ 0.8°F	+ 2 %
Mean	+ 2.5°F	+ 7%
High	+ 3.4°F	+ 14 %

2040s	Temperature	Precipitation
Low	+ 2.7°F	- 3 %
Mean	+4.0°F	+ 7%
High	+ 4.9°F	+ 14 %

Based on an increase in equivalent CO_2 of 1% per year. Benchmarked to the decade of the 1990s.

Not what we expect in a warming world - but maybe models are wrong about precip?

Variable Infiltration Capacity - n Layer (VIC-nL) Macroscale Hydrologic Model

River Network Routing Scheme for VIC-N

Main Impact: Less Snow

April 1 Snow Extent for the Columbia River Basin

Snake System Flows – Jackson Lk

Snake System Flows – Milner

Snake System Flows – Boise/Payet

Snake System Flows – Dworshak R

0

Snake System Flows – Clarkston

Overall Streamflow changes - 2020s

Three main points

- Humans are changing global climate, and these changes will become more evident
- Warming will reduce snowpack and exacerbate summer water shortages; some of these changes are already becoming apparent in Idaho
- Future warming introduces a climatedriven depletion of the SRP aquifer

Trends in timing of spring snowmelt (1948-2000)

Courtesy of Mike Dettinger, Iris Stewart, Dan Cayan

As the West warms, winter flows rise and summer flows drop

Figure by Iris Stewart, Scripps Inst. of Oceanog. (UC San Diego)

Three main points

- Humans are changing global climate, and these changes will become more evident
- Warming will reduce snowpack and exacerbate summer water shortages; some of these changes are already becoming apparent in Idaho
- Future warming introduces a climatedriven depletion of the SRP aquifer

Snake River Plain Aquifer

Current Climate

Warmer Climate

evaporation aquifer recharge losses from from surface goundwater water irrigation irrigation Surface Water Inputs from **Ground Water Groundwater Table**

Estimated Steady State Reductions in Snake River Plain Aquifer Discharge for Two Global Warming Scenarios

Implications

- Warming increases ET and reduces recharge: both effects reduce SRP Aquifer discharge to the Snake River
- A warmer climate will require greater effort to maintain current levels of aquifer discharge
- Beyond SRP aquifer, downstream water users will additionally be affected by loss of snowpack.

Three main points

- Humans are changing global climate, and these changes will become more evident
- Warming will reduce snowpack and exacerbate summer water shortages; some of these changes are already becoming apparent in Idaho
- Future warming introduces a climatedriven depletion of the SRP aquifer

Extra slides

Enhanced greenhouse effect

Figure 2: Annual Temperature Trends, (°C / century) 1901-1999

Source: P. Jones, et. al. 2000.

Precipitation trends, since 1920

Salmon Life Cycle and climate damage

Correlations of modeled and observed climate variables

Earth's radiation budget

From Kiehl and Trenberth, 1996

Implications

- Upstream of Milner, water supplies likely to be changed less by warming (low sensitivity, high storage)
- Downstream summer water supplies are already being eroded by loss of snowpack, especially in sensitive areas such as N. Fork Clearwater (Dworshak inflows).
- Water temperature problems in the lower basin may be exacerbated.